国内激光产业现状及应用产业链分析
世界上台激光器诞生于1960年,我国也于1961年研制激光器,距今已有半个世纪了。50年来,激光技术与应用发展迅猛,已与多个学科相结合形成多个应用技术领域,比如光电技术,激光与生物光子学、激光加工技术、激光检测与计量技术、激光全息技术、激光光谱分析技术、非线性光学、超快激光学、激光化学、量子光学、激光、激光制导、激光分离同位素、激光可控核聚变、激光等等。
这些交叉技术与新的学科的出现,大大地推动了传统产业和新兴产业的发展。经过近50年的艰苦努力,我国激光技术研究获得重大突破,激光产业也从无到有,我国激光加工产业一直呈指数增长,成为我国科学技术应用领域中活跃的产业之一。
目前,全国共有5个激光技术研究中心,10多个研究机构;有21个省、市生产和销售激光产品,常年有定型产品生产和销售、并形成一定规模的单位有200多家。
目前国内激光企要集中在湖北、、江苏、上海、和广东(含深圳、珠海特区)等经济发达省市。已基本形成以上述省市为主体的华中、环渤海湾、长江三角洲、珠江三角洲激光产业群,激光晶体、关键元器件、配套件、激光器、激光系统、应用开发、公共服务平台已形成较完整的激光产业链。
激光应用主要分为工业、、商业、科研、信息和军事六个领域。我国激光加工产业规模十几年间增长了近500多倍。在工业激光应用中,主要有材料加工和测量控制两大类。
激光材料加工则是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行激光切割、激光焊接、激光表面处理、激光打孔、激光微加工和激光标刻。
激光材料加工技术是涉及到光、机、电、算、材料及检测等多门学科的一门综合技术。发展激光技术,推动激光应用,我们不能只从某一方面来谈,而是要综合这些学科全盘考虑。为了便于描述和研究,抓住典型,我们以激光产业链为主线索来谈激光技术的发展,但激光产业链也还是一个大课题,我主要分析工业激光应用系统的产业链。
工业激光应用系统的产业链应该由下面四个方面组成:激光应用、激光加工系统、激光器和激光配件。可以看到,每一个激光应用领域都可以形成一个产业链,每一个产业链一定包括激光加工系统、激光器和激光配件。现在,成熟的激光产业链应该是工业激光应用的产业链,它包括激光切割产业链、激光焊接产业链、激光打标产业链、激光表面处理产业链、激光打孔产业链等等。
所以任何一个小的产业链都有它自身的发展过程和特点,该链中的每一个环节都很重要,任何一个环节发展不充分或发展滞后,这个产业链就不完整,就很难得到蓬勃发展。
目前国内有很强的激光切割机生产能力,包括设计制造切割系统、导光系统工作台运动系统及其关键零部件,也有很强的软件开发能力,生产高功率二氧化碳激光切割机典型企业包括武汉法利莱、楚天激光、上海团结普瑞玛、深圳大族等,但切割机中的二氧化碳激光器和聚焦镜则大部分依靠进口,切割机中几乎一半的成本是激光器,所以我们基本上是在中国“打洋工”,很大部分利润被外国公司拿走了。
就高功率二氧化碳激光器的功率指标来看,武汉科威晶可以生产高达4kW的激光器和正在开发7kW激光器,南京东方可以生产4kW激光器,南京通快可以生产3200W激光器。
但这些公司含有合资或引进国外技术的成分,激光器中的关键零部件也是依靠进口,比如风机和谐振腔镜片等。在低功率二氧化碳激光切割应用中,我国是产销量大的国家,不仅占领国内市场,并且大量出口,形成了成熟的中小功率二氧化碳激光切割机产业链,包括系统集成、激光器生产和相关的激光配件。
典型厂家有武汉众泰、三工、金运、东莞粤铭、济南金威刻等,但我们的产品也是以低端的直流激励的玻璃管二氧化碳激光器为主,价格低,品质一般,而的射频激励二氧化碳激光器只有南京晨锐达一家可以生产和供应市场,但产量很小,高功率只有50W。
值得庆幸的是,与之相关的激光配件如光学元器件、运动系统和控制软件等已经相当成熟。
高功率Nd:YAG激光切割是近年来中国激光产业发展较快的一个新型产业链,主要动力来源于薄钢板切割和高功率Nd:YAG激光器发展的相对成熟。
在5mm以下钢板切割中,使用固体激光器切割机整体投资较低,适合中小企业自主采购。现在主要用的是500W脉冲固体激光器,该激光器相关的产业如激光电源、金属和陶瓷泵浦腔等也发展比较成熟,质量也已达到产业化要求。
激光器和配件的主要厂家有武汉新特、中谷、华泽宏大等,典型激光切割机厂家有武汉华俄、奥华、华工激光、天琪、金运、广州瑞通等,武汉在全国具有优势,在开发生产高功率固体激光器和切割机的厂家也比较多。主要元器件都是国产的,所有产品在价格上很有优势。目前,攻关主要是在高功率下怎样获得高光束质量和高峰值功率,以便取得更好的切割质量。
刀片模切打样机与激光打样机,哪个更合适你?
在获得每一个订单之前,初的环节就是打样。倘若打样环节得不到客户认可,那么这订单肯定就不属于我们了,所以打样这个环节就显得尤为重要。而模切打样机也是我们在打样过程中接触得较多的设备了。
模切打样机主要用作解决大批量模切之前的打样定版和免刀模小批量裁切工作,是生产中必不可少的设备,也是模切傅的利器。其中刀片模切打样机与激光打样机是模切生产中两种常见的打样设备,今天和大家一起来看看这两个有什么区别?我们又该如何选择?
01
刀片模切打样机
刀片模切打样机是通过切割刀片来切割模切样品的外形,可以切割电子行业的绝缘材料、光电材料、屏蔽材料、粘胶制品等的打样和免刀模小批量生产。可以加工1.5mm厚绝缘材料、光电材料、屏蔽材料、粘胶制品,厚2mm的电子材料。
M刀片模切打样机的优点:
1、与刀模相比节省昂贵的开模费,重新试样方便;
2、与激光打样机相比:
切割后材料边缘不会发黑、碳化;
切割比较薄的材料时不会烧焦;
可以切割铜箔、铝箔、导电布、麦拉胶、光学材料等激光难加工的材料;
3、切割速度快、成本比较便宜。
M刀片模切打样机的缺点:
1、加工速度较慢,无法满足规模化生产。
2、由于使用刀片切割加工,直径小于0.5mm的小圆和R角无法加工。
3、不适合裁切软性的材料,加工时会变形或走位。
02
激光打样机
激光打样机用非热能的激光束对客户的材料模切成型,从而达到定制的形状和尺寸。适合于做双面胶类、泡棉类、防尘网、PVC、保护膜、导电布等。对于某些模切做不了的加工,比如小产品、微孔、形状,激光机也可以实现。
M激光打样机的优点:
1、与传统的模切方式相比,激光模切取消了模切版等硬件,减少了该部分的生产成本;
2、由于不涉及制版,因此生产周期大大缩短;
3、具有防伪功能;
4、切割的度高;
5、消除机械震动,大大改善工作环境、节省空间。
M激光打样机的缺点:
1、成本偏高;
2、激光模切会产生一定的烟雾,要通过安装保护罩解决;
3、切割速度较慢,不适合大批量的生产;
4、易导致切口宽、热影响区大和明显的工件变形。
激光切割加工关于尺寸变化
即使按照程序进行切割,也有加工产品无法满足精度要求的情况。所以需要根据不同的情况采取对策。
1.加工产品的全体尺寸有变化
这是由于切口上激光焦点直径和其周围燃烧区域形成的切口宽度所影响的。
虽然在相同条件下,对相同的加工物,使用同一偏置补偿值可以确保其精度,但是焦点位置的设定要凭借加工机操作人员的感觉来确定,而且热透镜作用也会造成焦点位置的变化,所以需要定期检查的偏置补偿值。
2.加工方向(部分)上的尺寸误差有差别
板材上部的尺寸精度与尺寸精度有不同的情况。这个现象要考虑两方面的原因。先,光束圆度和强度分布不均一,造成切口宽度沿加工方向有所不同。解决的方法是进行光轴调整或清洗光学部件。其次,被加工物受热膨胀会引起加工形状长方向尺寸变短的情况。
3.翘曲引起的变化
尺寸精度虽然在要求范围内,但由于热变形等原因会造成发生翘曲。加工铝、铜、不锈钢等时非常显著,它受到线膨胀系数、热容量等物性的影响。就加工形状来说,纵横比越大,翘曲量就越大。采用低热量加工条件以及加工线路等在加工程序上下工夫,但还没有完全解决问题。
加工板件所拥有的残余应力对翘曲和尺寸误差也有影响,所以我们需要对加工程序始终保持一定的配置方向。
4.间距精度变化
加工很多孔时,孔与孔之间的间距精度会出现偏差。由于在热膨胀情况下开孔,冷却收缩后,间距变小。我们可以在程序中补正收缩部分的精度或者灵活运用形状缩放功能。无论什么情况,都要在初期加工后,测定其加工尺寸,补误差。当间隔精度不随加工位置而变化,而是在整个加工区里都恶化时,其原因是机械精度的恶化而造成的。
5.圆度变化
在激光加工中加工孔切割面产生坡度是无法避免的,下面直径比背面直径大,一般都评估背面稍小一侧的圆度。
激光切割技术概要及激光切割精度
激光束聚焦成很小的光点其小直径可小于0.1mm,使焦点处达到很高的功率密度可超过106W/cm2。这时光束输入(由光能转换)的热量远远超过被材料反射、传导或扩散部分,材料很快加热至汽化湿度,蒸发形成孔洞。随着光束与材料相对线性移动,使孔洞连续形成宽度很窄(如0.1mm左右)的切缝。切边热影响很小,基本没有工件变形。切割过程中还添加与被切材料相适合的气体。钢切割时得用氧作为气体与溶融金属产生放热化学反应氧化材料,同时帮助吹走割缝内的熔渣。切割聚丙烯一类塑料使用压缩空气,棉、纸等易燃材料切割使用惰性气体。进入喷嘴的气体还能冷却聚焦透镜,防止烟尘进入透镜座内污染镜片并导致镜片过热。
大多数有机与无机都可以用激光切割。在工业制造占有分量很重的金属加工业,许多金属材料,不管它具有什么样的硬度,都可进形无变形切割(目前使用的激光切割系统可切割工业用钢的厚度已可接近20mm)。当然,对高反射率材料,如金、银、铜和铝合金,它们也是好的传热导体,因此激光切割很困难,甚至不能切割(某些难切割材料可使用脉冲波激光束进行切割,由于高的脉冲波峰值功率,会使材料对光束的吸收系数瞬间急剧提高)。
激光切割刺,皱折、精度高,优于等离子切割。对许多机电制造行业来说,由于微机程序的现代化激光切割系统能方便切割不同形状与尺寸的工件 (工件图纸也可修改),它往往比冲切、模压工艺更被优先选用;尽管它加工速度慢于模冲,但它没有模具消耗,无需修理模具,还节约更换模具时间,从而节省加工费用,降低产品成本,所以从总体上讲在经济上更为合算。
另一方面,从如何使模具适应工件设计尺寸和形状变化角度看,激光切割也可发挥其、重现性好的优势。作为层叠模具的优先制造手段,由于不需要模具制作工,激光切割运转费用也并不昂贵,因此还能显著地降低模具制造费用。激光切割模具还带来的附加好处是模具切边会产生一个浅硬化层(热影响区),提高模具运行中的耐磨性。激光切割的无接触特点给圆锯片切割成形带来无应力优势,由此提高了使用寿命。
常用工程材料的激光切割
1.金属材料的激光切割
虽然几乎所有的金属材料在室温对红外波能量有很高的反射率,但发射处于远红外波段1.064um光束的灯泵浦ND:YAG激光器及10.6μmCO2激光器还是成功的应用于许多金属的激光切割实践
2.非金属材料的激光切割10.6μm波长的CO2激光束很容易被非金属材料吸收,导热性不好和低的蒸发温度又使吸收的光束几乎整个输入材料内部,并在光斑照射处瞬间汽化,形成起始孔洞,进入切割过程的良性循环。
激光切割的精度
激光切割的精度由多方面因素组成:
1、激光束通过聚焦后的光斑的大小
激光束聚集后的光斑越小,切割精度越高,特别是切缝较小,小的光斑可达0.01mm。
2、工作台的走位精度决定着切割的重复精度
工作台精度越高,切割的精度越高。
3、工件厚度越大,精度越低,切缝越大。
由于激光光束为锥形,切缝也是锥形,厚度0.3MM的不锈钢比2MM的切缝小的多。
4、工件材质对激光切割精度有一定影响。
同样情况下,不锈钢要比铝的切割精度高,切面光滑一些。
激光切割机的切割质量好。切口宽度窄(一般为0.1--0.5mm)、精度高(一般孔中心距误差0.1--0.4mm,轮廓尺寸误差0.1--0.5mm)、切口表面粗糙度好(一般Ra为12.5--25μm),切缝一般不需要再加工即可焊接。